The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
نویسندگان
چکیده
The position-dependent specification of the hair and non-hair cell types in the Arabidopsis root epidermis provides a simple model for the study of cell fate determination in plants. Several putative transcriptional regulators are known to influence this cell fate decision. Indirect evidence from studies with the maize R gene has been used to suggest that a bHLH transcription factor also participates in this process. We show that two Arabidopsis genes encoding bHLH proteins, GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), act in a partially redundant manner to specify root epidermal cell fates. Plants homozygous for mutations in both genes fail to specify the non-hair cell type, whereas plants overexpressing either gene produce ectopic non-hair cells. We also find that these genes are required for appropriate transcription of the non-hair specification gene GL2 and the hair cell specification gene CPC, showing that GL3 and EGL3 influence both epidermal cell fates. Furthermore, we show that these bHLH proteins require a functional WER MYB protein for their action, and they physically interact with WER and CPC in the yeast two-hybrid assay. These results suggest a model in which GL3 and EGL3 act together with WER in the N cell position to promote the non-hair cell fate, whereas they interact with the incomplete MYB protein CPC in the H position, which blocks the non-hair pathway and leads to the hair cell fate.
منابع مشابه
The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis.
The specification of the hair and non-hair cells in the Arabidopsis root epidermis provides a useful model for the study of cell fate determination in plants. A network of putative transcriptional regulators, including the related bHLH proteins GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), is known to influence the patterning of these cell types. Here, we analyze the expression and regulation o...
متن کاملCell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.
The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcrip...
متن کاملA network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis.
GLABRA3 (GL3) encodes a bHLH protein that interacts with the WD repeat protein, TTG1. GL3 overexpression suppresses the trichome defect of the pleiotropic ttg1 mutations. However, single gl3 mutations only affect the trichome pathway with a modest trichome number reduction. A novel unlinked bHLH-encoding locus is described here, ENHANCER OF GLABRA3 (EGL3). When mutated, egl3 gives totally glabr...
متن کاملControl of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor
In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homol...
متن کاملArabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) Control Tomato (Solanum lycopersicum) Anthocyanin Biosynthesis
In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 130 26 شماره
صفحات -
تاریخ انتشار 2003